Knights and Knaves and Naive Set Theory

Oscar Levin

University of Northern Colorado
MathFest 2018, Denver

Joint work with Tyler Markkanen

1996 Putnam Exam B1

Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

1996 Putnam Exam B1

Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

1996 Putnam Exam B1

Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Let $X=\{5,6,7,8,9\}$. Find a set $A \subseteq X$ with $|A| \in A$.

Paradox!

$$
A=\{2,|A|\}
$$

Paradox!

$$
\begin{gathered}
A=\{2,|A|\} \\
B=\{1,3,|B|\}
\end{gathered}
$$

Paradox!

$$
\begin{gathered}
A=\{2,|A|\} \\
B=\{1,3,|B|\} \\
C=\{1,2,3,4,5,7,|C|\}
\end{gathered}
$$

Puzzle!

Notation: $|A|=a$.

What is the cardinality of $A=\{2,3, a\}$ (if it exists)?

Puzzle!

Notation: $|A|=a$.

What is the cardinality of $A=\{2,3, a\}$ (if it exists)?

What is the cardinality of $A=\{4, a, 2 a\} ?$

Puzzle!

Notation: $|A|=a$.

What is the cardinality of $A=\{2,3, a\}$ (if it exists)?

What is the cardinality of $A=\{4, a, 2 a\} ?$

What is the cardinality of $A=\{1,2, a, a-1\} ?$

Puzzle!

Notation: $|A|=a$.

What is the cardinality of $A=\{2,3, a\}$ (if it exists)?
Unique solution

What is the cardinality of $A=\{4, a, 2 a\}$?
Two solutions

What is the cardinality of $A=\{1,2, a, a-1\} ?$
Three solutions

Unique Solution Cardinality Puzzles

Definition
A cardinality puzzle is a description of a set A that explicitly mentions the cardinality of A.

Unique Solution Cardinality Puzzles

Definition
A cardinality puzzle is a description of a set A that explicitly mentions the cardinality of A.

When does a cardinality puzzle have a unique solution?

$$
A=\{3,4, a, a+1,2 a-1\}
$$

Unique Solution Cardinality Puzzles

Definition
A cardinality puzzle is a description of a set A that explicitly mentions the cardinality of A.

When does a cardinality puzzle have a unique solution?

$$
A=\{3,4, a, a+1,2 a-1\}
$$

Consider the cases: $a=2,3,4,5$.

Unique Solution Cardinality Puzzles

Definition
A cardinality puzzle is a description of a set A that explicitly mentions the cardinality of A.

When does a cardinality puzzle have a unique solution?

$$
A=\{3,4, a, a+1,2 a-1\}
$$

Consider the cases: $a=2,3,4,5$. Only one works: $A=\{3,4,5\}$.

Inverse Puzzle Problem

Which sets are the unique solution to a cardinality puzzle?

Inverse Puzzle Problem

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only selfish sets.

Inverse Puzzle Problem

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only selfish sets.

In fact. . .
Proposition
A is the unique solution to a cardinality puzzle iff A is selfish.

Inverse Puzzle Problem

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only selfish sets.

In fact. . .
Proposition
A is the unique solution to a cardinality puzzle iff A is selfish.

$$
A=\{1,5,6,10,13,42\}
$$

Inverse Puzzle Problem

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only selfish sets.

In fact. . .

Proposition

A is the unique solution to a cardinality puzzle iff A is selfish.

$$
\begin{aligned}
& A=\{1,5,6,10,13,42\} \\
& A=\{1,5, a, 10,13,42, f(a)\}
\end{aligned}
$$

Inverse Puzzle Problem

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only selfish sets.
In fact. . .

Proposition

A is the unique solution to a cardinality puzzle iff A is selfish.

$$
\begin{aligned}
& A=\{1,5,6,10,13,42\} \\
& A=\{1,5, a, 10,13,42, f(a)\}
\end{aligned}
$$

Where $f(a)$ is the line through $(6,42)$ and $(7,13)$

Knights and Knaves

$$
A=\{2, a\} \quad \cong \quad \text { I'm a knave }
$$

Knights and Knaves

$$
\begin{array}{lll}
A=\{2, a\} & \cong & \text { I'm a knave } \\
A=\{1, a\} & \cong & \text { I'm a knight }
\end{array}
$$

Knights and Knaves

$$
\begin{array}{llc}
A=\{2, a\} & \cong & \text { I'm a knave } \\
A=\{1, a\} & \cong & \text { I'm a knight } \\
A=\{3, a\} & \cong & \text { X }
\end{array}
$$

Knights and Knaves

$$
\begin{array}{llc}
A=\{2, a\} & \cong & \text { I'm a knave } \\
A=\{1, a\} & \cong & \text { I'm a knight } \\
A=\{3, a\} & \cong & \text { X }
\end{array}
$$

???

He is a knave We are both knights

Symbiotic Sets

Let $|A|=a$ and $|B|=b$. Find the cardinalities:

$$
\begin{aligned}
& A=\{3, b\} \\
& B=\{1, a, b\}
\end{aligned}
$$

Symbiotic Sets

Let $|A|=a$ and $|B|=b$. Find the cardinalities:

$$
\begin{aligned}
& A=\{3, b\} \\
& B=\{1, a, b\}
\end{aligned}
$$

- Suppose $a=1$. Then $b=3$. But then $B=\{1,1,3\}$

Symbiotic Sets

Let $|A|=a$ and $|B|=b$. Find the cardinalities:

$$
\begin{aligned}
& A=\{3, b\} \\
& B=\{1, a, b\}
\end{aligned}
$$

- Suppose $a=1$. Then $b=3$. But then $B=\{1,1,3\}$
- Thus $a=2$, so $B=\{1,2, b\}$ and $b \neq 3$. So $b=2$.

Symbiotic Sets

Let $|A|=a$ and $|B|=b$. Find the cardinalities:

$$
\begin{array}{ll}
A=\{3, b\} & \text { Al: Bob is a knave. } \\
B=\{1, a, b\} & \text { Bob: We are both knights. }
\end{array}
$$

- Suppose $a=1$. Then $b=3$. But then $B=\{1,1,3\}$
- Thus $a=2$, so $B=\{1,2, b\}$ and $b \neq 3$. So $b=2$.

Symbiotic Sets

Let $|A|=a$ and $|B|=b$. Find the cardinalities:

$$
\begin{array}{ll}
A=\{3, b\} & \text { Al: Bob is a knave. } \\
B=\{1, a, b\} & \text { Bob: We are both knights. }
\end{array}
$$

- Suppose $a=1$. Then $b=3$. But then $B=\{1,1,3\}$
- Suppose Al is a knave. This means Bob is a knight. But Bob's statement is false.
- Thus $a=2$, so $B=\{1,2, b\}$ and $b \neq 3$. So $b=2$.

Symbiotic Sets

Let $|A|=a$ and $|B|=b$. Find the cardinalities:

$$
\begin{array}{ll}
A=\{3, b\} & \text { Al: Bob is a knave. } \\
B=\{1, a, b\} & \text { Bob: We are both knights. }
\end{array}
$$

- Suppose $a=1$. Then $b=3$. But then $B=\{1,1,3\}$
- Suppose Al is a knave. This means Bob is a knight. But Bob's statement is false.
- Thus $a=2$, so $B=\{1,2, b\}$ and $b \neq 3$. So $b=2$.
- Thus Al is a knight, so Bob is a knave (and indeed his statement is false).

What about Carl?

Al: Only one of us is a knave.
Bob: No, only one of us is a knight.
Carl: We are all knaves.

What about Carl?

AI: Only one of us is a knave. Bob: No, only one of us is a knight. Carl: We are all knaves.

$$
\begin{aligned}
A & =\{1,3,5,6,7, b, c-7\} \\
B & =\{7,11, a, c\} \\
C & =\{4,7,11,12,13,14,15,16, a, b, c\}
\end{aligned}
$$

What about Carl?

Al: Only one of us is a knave.
Bob: No, only one of us is a knight.
Carl: We are all knaves.

$$
\begin{array}{rr}
A=\{1,3,5,6,7, b, c-7\} & 5 \leq a \leq 7 \\
B=\{7,11, a, c\} & 2 \leq b \leq 4 \\
C=\{4,7,11,12,13,14,15,16, a, b, c\} & 8 \leq c \leq 11
\end{array}
$$

What about Carl?

Al: Only one of us is a knave.
Bob: No, only one of us is a knight.
Carl: We are all knaves.

$$
\begin{array}{rlr}
A & =\{1,3,5,6,7, b, c-7\} & 5 \leq a \leq 7 \\
B & =\{7,11, a, c\} & 2 \leq b \leq 4 \\
C & =\{4,7,11,12,13,14,15,16, a, b, c\} & 8 \leq c \leq 11
\end{array}
$$

A set "asserts" all its elements are distinct (its size is maximal).

Open Questions

- Does every knight and knave puzzle have a matching cardinality puzzle?
- Is the correspondence better suited for multi-valued logics? There are lots of ways for a set to "lie."

Thanks!

Slides:

math.oscarlevin.com/research.php

